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We investigate the electromagnetic propagation in two-dimensional photonic crystals, formed by parallel
dielectric cylinders embedded in a uniform medium. The frequency band structure is computed using the
standard plane-wave expansion method, while the propagation and scattering of the electromagnetic waves are
calculated by the multiple scattering theory. It is shown that within partial band gaps, the waves tend to bend
away from the forbidden directions. Such a property may render novel applications in manipulating optical
flows. In addition, the relevance with the imaging by flat photonic crystal slabs will also be discussed.
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I. INTRODUCTION

When propagating through periodically structured media
such as photonic crystals(PCs), optical waves will be modu-
lated with the periodicity. As a result, the dispersion of waves
will no longer behave as in a free space, and so-called fre-
quency band structures appear. Under certain conditions,
waves may be prohibited from propagation in certain or all
directions, corresponding to partial and complete band gaps,
respectively. The photonic crystals revealing band gaps are
called band gap materials.

Photonic crystals and band gap materials have a broad
spectrum of applications, ranging from computing to digital
communication and from laser cavities to optical transistors
[1]. The possibilities are unlimited. In fact, applications have
gone well beyond expectation, and are so far reaching that a
fruitful new field called photonic crystals has come into ex-
istence. Most updated information about the research of pho-
tonic crystals and related materials can be found in the com-
prehensive webpage[2].

So far, most applications are associated with the proper-
ties of the complete band gaps of PCs. On one hand, the
band gaps confine optical propagation within certain fre-
quency regimes. On the other, when encountering the com-
plete bands, optical waves can be guided into desired direc-
tions. For example, one of the main applications of PCs is to
control optical flows, so that they can be used for things such
as telecommunications. A comprehensive survey of phonic
crystal research can be referred to Refs.[1–6]. To our knowl-
edge, however, there have been very few attempts in the
literature to explore possible usage of partial band gaps. In
this paper, we wish to discuss a previously undiscussed phe-
nomenon associated with partial band gaps, that is, deflection
of optical waves. That is, the partial band gap can collimate
wave propagation into certain directions. This property may
allow for novel applications in manipulating optical flows.

The paper is organized as follows. The systems and the
theory will be outlined in the following section. The results
and discussion will be presented in Sec. III, followed by a
short summary.

II. THE SYSTEMS AND FORMULATION

The systems considered here are two-dimensional photo-
nic crystals made of arrays of parallel dielectric cylinders
placed in a uniform medium, which we assume to be air.
Such systems are common in both theoretical simulations or
experimental measurements of two-dimensional PCs[1,2].
For brevity, we only consider theE-polarized waves(TM
mode), that is, the electric field is kept parallel to the cylin-
ders. The following parameters are used in the simulation.

(1) The dielectric constant of the cylinders is 14, and the
cylinders are arranged to form a square lattice.

(2) The lattice constant isa and the radius of the cylin-
ders is 0.3a; in the computation, all lengths are scaled by the
lattice constant.

(3) The unit for the angular frequency is 2pc/a. After
scaling, the systems become dimensionless; thus the features
discussed here would be applicable to a wider range of
situations.

While the frequency band structure in the systems can be
calculated by the plane-wave expansion method[1], the
propagation and scattering of electromagnetic(EM) waves in
such systems can be studied by the standard multiple scatter-
ing theory. The theory originated from the self-consistent
idea first discussed by Foldy[7], and then reached maturity
through the significant efforts by Lax[8], Waterman and Tru-
ell [9], and particularly by Twersky[10]. The multiple scat-
tering theory has been reformulated in various forms for two-
and three-dimensional systems[11–14]. A review may be
found in Ref.[15]

The essence of the theory is summarized as follows. In
response to the incident wave from the source and the scat-
tered waves from other scatterers, each scatter will scatter
waves repeatedly, and the scatterered waves can be ex-
pressed in terms of a modal series of partial waves. When
this scattered wave serves as an incident wave to other scat-
terers, a set of coupled equations can be formulated and com-
puted rigorously. The total wave at any spatial point is the
summation of the direct wave from the source and the scat-
tered waves from all scatterers. The intensity of the wave is
represented by the square of the wave field.

For the reader’s convenience we present briefly the gen-
eral multiple scattering theory. Consider thatN straight cyl-*Corresponding author. Electronic address: zhen@phy.ncu.edu.tw
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inders of radiusai located atrWi with i =1,2, . . . ,N to form an
array. A line source transmitting monochromatic waves is
placed atrWs. Here we take the standard approach with regard
to the source. That is, the transmission from the source is
calculated from the multiple scattering theory, and assume
that the source is not affected by the surroundings. If some
other sources such as a line of atoms are used, the reaction
between the source and the backscattered waves should be
taken into account.

The scattered wave from each cylinder is a response to the
total incident wave composed of the direct wave from the
source and the multiply scattered waves from other cylin-
ders. The final wave reaching a receiver located atrWr is the
sum of direct wave from the source and the scattered waves
from all the cylinders.

The scattered wave from thej th cylinder can be written as

pssrW,rW jd = o
n=−`

`

ipAn
j Hn

s1dskurW − rW judeinfrW−rW j , s1d

where k is the wave number in the medium,Hn
s1d is the

nth-order Hankel function of first kind, andfrW−rW j
is the azi-

muthal angle of the vectorrW−rW j relative to the positivex axis.
The total incident wave around theith cylinder si
=1,2, . . . ,N; i Þ jd is the summation of the direct incident
wave from the source and the scattered waves from all other
scatterers, and can be expressed as

pin
i srWd = o

n=−`

`

Bn
i JnskurW − rWiudeinfrW−rWi . s2d

In this paper,p stands for the electrical field in the TM mode
and the magnetic field in the TE mode.

The coefficientsAn
i and Bn

i can be solved by expressing
the scattered wavepssrW ,rW jd, for each j Þ i, in terms of the
modes with respect to theith scatterer by the addition theo-
rem for Bessel function. Then the usual boundary conditions
are matched at the surface of each scattering cylinder. This
leads to

Bn
i = Sn

i + o
j=1,jÞi

N

Cn
j ,i , s3d

with

Sn
i = ipH−n

s1dskurWiude−infrWi , s4d

and

Cn
j ,i = o

l=−`

`

ipAl
jHl−n

s1d skurWi − rW judeisl−ndfrWi−rW j , s5d

and

Bn
i = ipt n

i An
i , s6d

wheret n
i are the transfer matrices relating the properties of

the scatterers and the surrounding medium, and are given as

t n
i =

Hn
s1dskaidJn8skai/hid − gihiHn

s1d8skaidJnskai/hid
gihiJn8skaidJnskai/hid − JnskaidJn8skai/hid

, s7d

where

hi =
1

Îe i
, and gi = He i for TE waves

1 for TM waves,

in which e i is the dielectric constant ratio between theith
scatterer and the surrounding medium.

The coefficientsAn
i andBn

j can then be inverted from Eq.
(3). Once the coefficientsAn

i are determined, the transmitted
wave at any spatial point is given by

psrWd = p0srWd + o
i=1

N

o
n=−`

`

ipAn
i Hn

s1dskurW − rWiudeinfrW−rWi , s8d

where p0 is the field when no scatterers are present. The
transmitted intensity field is defined asupu2.

III. RESULTS AND DISCUSSION

The frequency band structure is plotted in Fig. 1, and the
qualitative features are similar to that obtained for a square
array of alumina rods in air. A complete band gap is shown
between frequencies of 0.22 and 0.28. Just below the com-
plete gap, there is a regime, sandwiched by two horizontal
lines, of partial band gap in which waves are not allowed to
travel along theGX or [10] direction. We will consider waves
whose frequency is within this partial band gap. In particular,
we choose the frequency to be 0.192.

First we consider the propagation of EM waves through
two rectangular slabs of arrays of dielectric cylinders. Figure
2 shows the images of the fields. The left panel shows the
real parts of the fieldsEz, while the right panel presents the
images of the intensity fieldsuEzu2. In (a1) and(a2), the slab
measures 14345, and the slab is oriented such that the[11]

FIG. 1. (Color online) The band structure of a square lattice of
dielectric cylinders. The lattice constant isa and the radius of the
cylinders is 0.3a. GM andGX denote the[11,10] directions, respec-
tively. A partial gap is between the two horizontal lines.
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direction, i.e., theGM direction, is along the horizontal level.
The size of the slab in(b1) and(b2) is 10345, and the[11]
direction is titled upwards and makes an angle of 22.5 deg
with respect to the horizontal direction. The frequency is
chosen at 0.192. A transmitting point source is placed at 2
lattice constants away from the left side of the slabs. The
detailed geometrical information can be referred to in Fig. 2.

A few observations can be drawn from Fig. 2. First, there
is a focused image across the slab in(a1) and (a2). Earlier,
this focused image was attributed to the effect of negative
refraction[6], inferred from the group velocity calculation. If
this conjecture were valid, another focused image would be
expected inside the slab as well. Our result does not support
this conjecture. As seen from(a1) and (a2), there is no fo-
cused image inside the slab. Rather, the waves are mostly
confined in a tunnel or self-collimated, and travel to the other
side of the slab, then release to the free space. This is under-
standable, because the forbidden direction in(a1) and(a2) is
along GX, which makes an angle of 45 deg from theGM
direction that lies horizontally. The passing band in theGM
direction thus acts as a transportation carrier that moves the
source to the other side of the slab. The waves on the right
hand side of the slab look as if they were radiated by an
image that has been transported across the slab within a nar-
row guide. We note[16] that the present observation is in
good agreement with the results in Refs.[17,18]. Second, the
waves tend to bend towards theGM direction [18], as evi-
denced by Fig. 2(b1) and(b2). Third, the decay of the trans-
ported intensity along the traveling path is not obvious, an
indication of efficient guided propagation.

The results in Fig. 2 are promising. They show that in the
presence of partial band gaps and when incident upon a slab
of photonic crystals, waves tend to bend toward directions
which are mostly away from forbidden directions. This
would indicate that partial band gaps may be considered as a
candidate for guiding wave flows. To verify this conjecture,
we have further explored the guiding phenomenon associated
with partial band gaps.

In Fig. 3, we show the EM wave propagation through
stacks of photonic crystal slabs. Two setups are considered.
In (a1) and(a2), two slabs of dielectric cylinders are stacked
together. The first(left) slab is oriented such that the[11]
direction is horizontal, while the second(right) slab is ar-
ranged to make the[11] direction tilted upward, making 22.5
deg with respect to the horizontal direction. The two slabs
measure as 9344 and 14344, respectively. In(b1) and(b2),
two slabs are adjacently attached. The[11] direction is tilted
upward by 10 deg for the first(left) slab, while it is along the
horizontal direction in the second(right) slab. The sizes of
the two slabs are 8340 and 10340, respectively. In both
situations(a) and(b), the point source is placed at a distance
of 1.5 away from the left side of the stacks. The purpose here
is to show how the light would travel when two adjacent
slabs have different orientations.

Here it is clearly shown that the EM waves indeed always
tend to travel along the[11] direction. In the case of(b1) and
(b2), an image has been formed on the right hand side. Com-
pared to the source, the image is uplifted by a distance about
8 tansp /18d. In the cases considered here, the first slabs
(left) serve as a collimating device, and then the collimated
waves will be guided by subsequent photonic crystal slabs.
This consideration can be extended to multiple consecutive
slabs so that the wave flows can be guided into desired ori-
entations, making possible alternative ways of controlling
optical flows.

In Fig. 4, we consider two other situations of stacked
photonic crystal slabs. The geometrical parameters are indi-
cated in the figure. Again, the waves tend to move along the
[11] direction. Here the amphoteric diffraction is observed. It
draws analogy with the amphoteric refraction observed when
waves propagate from an isotropic to an anisotropic medium
[19].

The results from Figs. 2–4 clearly indicate that the partial
band gaps can be indeed used as a guiding channel for opti-

FIG. 2. (Color online) Imaging of the transmitted fields across
two slabs of dielectric cylinders. The black circles denote the cyl-
inders(for clarity, not all cylinders are plotted).

FIG. 3. (Color online) Imaging of the intensity fields across two
consecutive slabs of arrays of dielectric cylinders in two arrange-
ments. The left and right panels, respectively, plot the real part of
the field and the intensity.
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cal flows. It can be also inferred that the guided transport is
efficient. We have carried out further simulations against
variations of frequencies, filling factors, and dielectric con-
stants, the results are quantitatively the same for waves
within partial band gaps. The observation presented here has
also been confirmed by FDTD simulations. The controlled
wave transport due to partial band gaps of PCs should be
interpreted in terms of diffraction or scattering rather than

refraction; in fact, no refraction index can be determined for
the phenomenon.

An immediate question may thus arise. Why do the waves
of frequencies within the partial band gap tend to bend to
particular directions? To answer this question, we have ex-
amined the properties of the energy flow of the eigenmodes
which correspond to the frequency bands. While details will
be published elsewhere, here we only outline our thoughts.
The usual approach mainly relies on the curvatures of fre-
quency bands to infer the energy flow. As documented in
Ref. [20], an energy velocity is defined as

vWe =

1

V
E JWKW d3r

1

V
E UKW d3r

,

whereJWKW andUKW are the energy flux and energy density of
the eigenmodes, and the integration is performed in a unit
cell. It can be shown that thus defined energy velocity equals

the group velocity obtained asvWg==KW vsKW d. Therefore it is
common to calculate the group velocity to infer the energy
velocity and subsequently the energy flows or refraction of
waves. A few questions, however, may arise with regard to
this approach. First, when the variation in the Bloch vector,

i.e., dKW , is small, the changes inv, EW KW , andHW KW should also
be small. Second, the variation operation should be ex-
changeable with the partial differential operations. When
these two conditions fail, the energy velocity will become ill
defined. Third, even if the two conditions hold, whether the
net current flow through a unit cell really follows the direc-
tion of vWe remains unclear. We note here that the average flux

through a surface may be defined askJWl=sn̂/SdedSW ·JW, where

FIG. 5. (Color online) Left panel: the field
pattern of eigenmodes. Right panel: the energy
flow of the eigenmodes. The eigenmodes along

two directions are considered: (a) KW

=s0.9p /a,0.37p /ad, i.e., along an angle of 22.5°
exactly betweenGX and GM directions; the cor-

responding frequency is 0.185;(b) KW

=s0.7p /a,0.7p /ad, i.e., along GM; the corre-
sponding frequency is 0.192. The direction of the
Bloch vectors are denoted by the blue arrows,
while the red arrows denote the local energy flow
including the direction and the magnitude. The
circles refer to the cylinders. Both frequencies in
(a) and (b) lie within the partial gap. Due to the
periodicity, we only plot the energy flow within
one unit cell. Note that although the features
shown by(a) also hold for other Bloch vectors
for which the corresponding frequencies lie
within the partial gap regime, we only plot here
for the case of 22.5°.

FIG. 4. (Color online) Imaging of the intensity fields across two
consecutive slabs of arrays of dielectric cylinders in two arrange-
ments. The left and right panels respectively plot the real part of the
field and the intensity. Shown here is the amphoteric diffraction at
the interfaces between two adjacent slabs:(a) positive and(b) nega-
tive. In both(a) and(b), the adjacent slabs measure as 10350 and
12350.
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n̂ is the normal of the surface and the surface integration
should not include the areas occupied by the cylinders. An-
other possible way in finding the actual current might be
kJWl=s1/SdedSJW. Again, the integration should not include
the areas taken by the scatterers. Clearly, the volume aver-
aged current within a unit cell, for which the integration
includes the areas occupied by the scatterers, does not nec-
essarily correspond to the actual current flow. We will pub-
lish verifications elsewhere.

To avoid possible ambiguities, here we consider the en-
ergy flow based upon its genuine definition. One advantage
of this approach is that we are also able to examine the local
properties of energy flows. By Bloch’s theorem, the eigen-
modes corresponding to the frequency bands of PCs can be

expressed asEKW srWd=eiKW ·rWuKW srWd, whereKW is the Bloch vector,
as the wave vector, anduKW srWd is a periodic function with the
periodicity of the lattice. When expressingEKW srWd as
uEKW srWdueiuKW srWd, the corresponding energy flow is derived as

JWKW srWd~ uEKW srWdu2=uKW srWd; clearly, uKW combines the phase from

the termeiKW ·rW and the phase from the functionuKW srWd. To ex-
plore the characteristics of the partial band gap, we have
computed the eigenfieldEKW srWd and also the energy flow of
the eigenmodes. The results are shown in Fig. 5. Figure 5(a)
shows that the energy eventually tends to flow into the direc-
tion of GM, i.e., the[11] direction, while the Bloch vector
points to an angle of 22.5° that lies exactly betweenGX and
GM.

Last, we would like to make a further comment on the
effectiveness of the guided transport. For this, we consider
the transmission versus the slab horizontal size. To be brief,
we will consider the case in Fig. 1(a1). The results are shown
in Fig. 6. The important feature is that the transmission does
not decay as the sample size increases. Here we see that the
transmission fluctuates around the value of one. The reason
for the fluctuation is due to either constructive or destructive
interference associated with the waves which are back and
forth reflected inside the slab by the two interfaces, just like
what would also happen when waves transmit through a slab
of uniform medium. The results in Fig. 6 imply that the
guided transport by partial gaps is efficient.

Although the above features are only investigated for the
first partial band gap in this paper, we have found that they
are also valid for other partial band gaps. For example, we
have also considered the second partial band gap which is
located between 0.283 and 0.325. All above features remain
quantitatively valid. Within this second gap, however, the

waves are collimated to travel along the[10] direction rather
than the[11] direction. In addition, we have also carried out
simulations for various slab sizes, all the features are the
same, thus excluding the boundaries as the possible cause.

IV. SUMMARY

We have considered EM wave propagation through slabs
of photonic crystals which are made of arrays of dielectric
cylinders. Properties of partial band gaps are investigated. It
was shown that the partial band gaps may act as a guiding
channel for wave propagation inside the photonic crystals.
Such a feature may lead to novel applications in manipulat-
ing optical flows.
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